AskDefine | Define ethanol

Dictionary Definition

ethanol n : the intoxicating agent in fermented and distilled liquors; used pure or denatured as a solvent or in medicines and colognes and cleaning solutions and rocket fuel; proposed as a renewable clean-burning additive to gasoline [syn: ethyl alcohol, fermentation alcohol, grain alcohol]

User Contributed Dictionary

see Ethanol



  1. A simple aliphatic alcohol formally derived from ethane by replacement of a hydrogen atom by a hydroxyl group: CH3-CH2-OH


simple aliphatic alcohol: CH3-CH2-OH
  • Afrikaans: etanol
  • Bosnian: etanol
  • Bulgarian: етанол
  • Catalan: etanol
  • Chinese: 乙醇
  • Croatian: etanol
  • Finnish: etanoli
  • French: éthanol
  • German: Ethanol
  • Greek: αιθανόλη, αιθυλική αλκοόλη, οινόπνευμα
  • Ido: etanolo
  • Italian: etanolo
  • Japanese: エタノール
  • Portuguese: etanol
  • Spanish: etanol
  • Swedish: etanol
  • Turkish: etanol


Extensive Definition

Ethanol, also called ethyl alcohol, grain alcohol, or drinking alcohol, is a volatile, flammable, colorless liquid. It is best known as the type of alcohol found in alcoholic beverages and in thermometers. In common usage, it is often referred to simply as alcohol.
Ethanol is also known as EtOH, using the common organic chemistry notation of representing the ethyl group (C2H5) with Et. The National Institute on Alcohol Abuse and Alcoholism maintains an EtOH database.
Ethanol is a straight-chain alcohol, and its molecular formula is C2H5OH. An alternative notation is CH3-CH2-OH, which indicates that the carbon of a methyl group (CH3-) is attached to the carbon of a methylene group (-CH2-), which is attached to the oxygen of a hydroxyl group (-OH).
Its empirical formula is C2H6O, a formula that it shares with dimethyl ether.
Except for the use of fire, the fermentation of sugar into ethanol is very likely the earliest organic reaction known to humanity, and the intoxicating effects of ethanol consumption have been known since ancient times. In modern times, ethanol intended for industrial use is also produced from byproducts of petroleum refining.
Ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. In chemistry, it is both an essential solvent and a feedstock for the synthesis of other products. It has a long history as a fuel for heat and light and also as a fuel for internal combustion engines.


Ethanol has been used by humans since prehistory as the intoxicating ingredient of alcoholic beverages. Dried residues on 9000-year-old pottery found in China imply that alcoholic beverages were used even among Neolithic people. Its isolation as a relatively pure compound was first achieved by Muslim chemists who developed the art of distillation during the Abbasid caliphate, the most notable of whom were Jabir ibn Hayyan (Geber), Al-Kindi (Alkindus), and al-Razi (Rhazes, 865–925).
Writings attributed to Jabir ibn Hayyan (721–815) mention the flammable vapors of boiled wine. Al-Kindi (801–873) unambiguously described the distillation of wine.
In 1796, Johann Tobias Lowitz obtained pure ethanol by filtering distilled ethanol through activated charcoal.
Antoine Lavoisier described ethanol as a compound of carbon, hydrogen, and oxygen, and in 1808 Nicolas-Théodore de Saussure determined ethanol's chemical formula. Fifty years later, Archibald Scott Couper published the structural formula of ethanol, which placed ethanol among the first chemical compounds to have their chemical structure determined.
Ethanol was first prepared synthetically in 1826 through the independent efforts of Henry Hennel in Great Britain and S.G. Sérullas in France. In 1828, Michael Faraday prepared ethanol by acid-catalyzed hydration of ethylene, a process similar to that which is used today for industrial ethanol synthesis.
Ethanol was used as lamp fuel in the United States as early as 1840, but a tax levied on industrial alcohol during the Civil War made this use uneconomical. This tax was repealed in 1906, and from 1908 onward Ford Model T automobiles could be adapted to run on ethanol. With the advent of Prohibition in 1920 though, sellers of ethanol fuel were accused of being allied with moonshiners,
Ethanol’s miscibility with water contrasts with that of longer-chain alcohols (five or more carbon atoms), whose water miscibility decreases sharply as the number of carbons increases. and numerous flavoring, coloring, and medicinal agents.
Two unusual phenomena are associated with mixtures of ethanol and water. Ethanol-water mixtures have less volume than the sum of their individual components. Mixing equal volumes of ethanol and water results in only 1.92 volumes of mixture. The addition of even a few percent of ethanol to water sharply reduces the surface tension of water. This property partially explains the “tears of wine” phenomenon. When wine is swirled in a glass, ethanol evaporates quickly from the thin film of wine on the wall of the glass. As the wine’s ethanol content decreases, its surface tension increases and the thin film “beads up” and runs down the glass in channels rather than as a smooth sheet.
Mixtures of ethanol and water that contain more than about 50% ethanol are flammable and easily ignited. Alcoholic proof is a widely used measure of how much ethanol (i.e., alcohol) such a mixture contains. In the 18th century, proof was determined by adding a liquor (such as rum) to gunpowder. If the gunpowder burned, that was considered to be “100% proof” that it was “good” liquor — hence it was called “100 proof.”
Ethanol-water solutions that contain less than 50% ethanol may also be flammable if the solution is first heated. Some cooking methods call for wine to be added to a hot pan, causing it to flash boil into a vapor, which is then ignited to burn off excess alcohol.
Ethanol is slightly more refractive than water, having a refractive index of 1.36242 (at λ=589.3 nm and 18.35 °C). Hydrogen chloride in the presence of their respective zinc chloride is known as Lucas reagent.)


Ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Which process is more economical is dependent upon the prevailing prices of petroleum and of grain feed stocks.

Ethylene hydration

Ethanol for use as industrial feedstock is most often made from petrochemical feed stocks, typically by the acid-catalyzed hydration of ethylene, represented by the chemical equation
C2H4(g) + H2O(g) → CH3CH2OH(l)
The catalyst is most commonly phosphoric acid, adsorbed onto a porous support such as diatomaceous earth or charcoal. This catalyst was first used for large-scale ethanol production by the Shell Oil Company in 1947. The reaction is carried out at with an excess of high pressure steam at 300 °C.
In an older process, first practiced on the industrial scale in 1930 by Union Carbide, but now almost entirely obsolete, ethylene was hydrated indirectly by reacting it with concentrated sulfuric acid to produce ethyl sulfate, which was then hydrolyzed to yield ethanol and regenerate the sulfuric acid:
The fermentation process must exclude oxygen. If oxygen is present, yeast undergo aerobic respiration which produces carbon dioxide and water rather than ethanol.
In order to produce ethanol from starchy materials such as cereal grains, the starch must first be converted into sugars. In brewing beer, this has traditionally been accomplished by allowing the grain to germinate, or malt, which produces the enzyme, amylase. When the malted grain is mashed, the amylase converts the remaining starches into sugars. For fuel ethanol, the hydrolysis of starch into glucose can be accomplished more rapidly by treatment with dilute sulfuric acid, fungally produced amylase, or some combination of the two.

Cellulosic ethanol

Sugars for ethanol fermentation can be obtained from cellulose. Until recently, however, the cost of the cellulase enzymes capable of hydrolyzing cellulose has been prohibitive. The Canadian firm Iogen brought the first cellulose-based ethanol plant on-stream in 2004. Its primary consumer so far has been the Canadian government, which, along with the United States Department of Energy, has invested heavily in the commercialization of cellulosic ethanol. Deployment of this technology could turn a number of cellulose-containing agricultural byproducts, such as corncobs, straw, and sawdust, into renewable energy resources. Other enzyme companies are developing genetically engineered fungi that produce large volumes of cellulase, xylanase and hemicellulase enzymes. These would convert agricultural residues such as corn stover, wheat straw and sugar cane bagasse and energy crops such as switchgrass into fermentable sugars.
Cellulose-bearing materials typically also contain other polysaccharides, including hemicellulose. When hydrolyzed, hemicellulose decomposes into mostly five-carbon sugars such as xylose. S. cerevisiae, the yeast most commonly used for ethanol production, cannot metabolize xylose. Other yeasts and bacteria are under investigation to ferment xylose and other pentoses into ethanol.
On January 14, 2008, General Motors announced a partnership with Coskata, Inc. The goal is to produce cellulosic ethanol cheaply, with an eventual goal of US$1 per U.S. gallon ($0.30/L) for the fuel. The partnership plans to begin producing the fuel in large quantity by the end of 2008. By 2011 a full-scale plant will come on line, capable of producing 50 to 100 million gallons of ethanol a year (200–400 ML/a).

Prospective technologies

The anaerobic bacterium Clostridium ljungdahlii, recently discovered in commercial chicken wastes, can produce ethanol from single-carbon sources including synthesis gas, a mixture of carbon monoxide and hydrogen that can be generated from the partial combustion of either fossil fuels or biomass. Use of these bacteria to produce ethanol from synthesis gas has progressed to the pilot plant stage at the BRI Energy facility in Fayetteville, Arkansas.
Another prospective technology is the closed-loop ethanol plant. Ethanol produced from corn has a number of critics who suggest that it is primarily just recycled fossil fuels because of the energy required to grow the grain and convert it into ethanol. There is also the issue of competition with use of corn for food production. However, the closed-loop ethanol plant attempts to address this criticism. In a closed-loop plant, the energy for the distillation comes from fermented manure, produced from cattle that have been fed the by-products from the distillation. The leftover manure is then used to fertilize the soil used to grow the grain. Such a process is expected to have a much lower fossil fuel requirement.
Though in an early stage of research, there is some development of alternative production methods that use feed stocks such as municipal waste or recycled products, rice hulls, sugarcane bagasse, small diameter trees, wood chips, and switchgrass.


Breweries and biofuel plants employ two methods for measuring ethanol concentration. Infrared ethanol sensors measure the vibrational frequency of dissolved ethanol using the CH band at 2900 cm−1. This method uses a relatively inexpensive solid state sensor that compares the CH band with a reference band to calculate the ethanol content. The calculation makes use of the Beer-Lambert law. Alternatively, by measuring the density of the starting material and the density of the product, using a hydrometer, the change in specific gravity during fermentation indicates the alcohol content. This inexpensive and indirect method has a long history in the beer brewing industry.


Ethylene hydration or brewing produces an ethanol–water mixture. For most industrial and fuel uses, the ethanol must be purified. Fractional distillation can concentrate ethanol to 95.6% by weight (89.5 mole%). This mixture is an azeotrope with a boiling point of 78.1 °C, and cannot be further purified by distillation.
In one common industrial method to obtain absolute alcohol, a small quantity of benzene is added to rectified spirit and the mixture is then distilled. Absolute alcohol is obtained in the third fraction, which distills over at 78.3 °C (351.4 K). Because a small amount of the benzene used remains in the solution, absolute alcohol produced by this method is not suitable for consumption, as benzene is carcinogenic.
There is also an absolute alcohol production process by desiccation using glycerol. Alcohol produced by this method is known as spectroscopic alcohol — so called because the absence of benzene makes it suitable as a solvent in spectroscopy.
Other methods for obtaining absolute ethanol include desiccation using adsorbents such as starch or zeolites, which adsorb water preferentially, as well as azeotropic distillation and extractive distillation.

Types of ethanol

Denatured alcohol

Pure ethanol and alcoholic beverages are heavily taxed. Ethanol has many applications that do not involve human consumption. To relieve the tax burden on these applications, most jurisdictions waive the tax when agents have been added to the ethanol to render it unfit for human consumption. These include bittering agents such as denatonium benzoate, as well as toxins such as methanol, naphtha, and pyridine.

Absolute ethanol

Absolute or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol not intended for human consumption often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Generally this kind of ethanol is used as solvents for lab and industrial settings where water will disrupt a desired reaction.
Pure ethanol is classed as 200 proof in the USA, equivalent to 175 degrees proof in the UK system.


As a fuel

The largest single use of ethanol is as a motor fuel and fuel additive. The largest national fuel ethanol industries exist in Brazil (gasoline sold in Brazil contains at least 20% ethanol and anhydrous ethanol is also used as fuel in more than 90% of new cars sold in the country). The Brazilian production of ethanol is praised for the high carbon sequestration capabilities of the sugar cane plantations, thus making it a real option to combat climate change.
Henry Ford designed the first mass-produced automobile, the famed Model T Ford, to run on pure anhydrous (ethanol) alcohol -- he said it was "the fuel of the future". Today, however, 100% pure ethanol is not approved as a motor vehicle fuel in the US. Added to gasoline, ethanol reduces ground-level ozone formation by lowering volatile organic compound and hydrocarbon emissions, decreasing carcinogenic benzene, and butadiene, emissions, and particulate matter emissions from gasoline combustion.
Prior to the development of electronic fuel injection (EFI) and computerized engine management, the lower energy content of ethanol required that the engine carburetor be rejetted to permit a larger volume of fuel to mix with the intake air. EFI is able to actively compensate for varying fuel energy densities by monitoring the oxygen content of exhaust gases. However, a standard EFI gasoline engine can typically only tolerate up to 10% ethanol and 90% gasoline. Higher ethanol ratios require either larger-volume fuel injectors or an increase in fuel rail pressure to deliver the greater liquid volume needed to equal the energy content of pure gasoline.
Today, more than half of Brazilian fleet of cars on the streets are able to use 100% ethanol as fuel, which includes ethanol-only engines and flex-fuel engines. Flex-fuel engines in Brazil are able to work with all ethanol, all gasoline, or any mixture of both. In the US flex-fuel vehicles can run on 0% to 85% ethanol (15% gasoline) since higher ethanol blends are not yet allowed. Brazil supports this population of ethanol-burning automobiles with large national infrastructure that produces ethanol from domestically grown sugar cane. Sugar cane not only has a greater concentration of sucrose than corn (by about 30%), but is also much easier to extract. The bagasse generated by the process is not wasted, but is utilized in power plants as a surprisingly efficient fuel to produce electricity.
World production of ethanol in 2006 was , with 69% of the world supply coming from Brazil and the United States.
The United States fuel ethanol industry is based largely on corn. According to the Renewable Fuels Association, as of October 30, 2007, 131 grain ethanol bio-refineries in the United States have the capacity to produce 7.0 billion US gallons (26 GL) of ethanol per year. An additional 72 construction projects underway (in the U.S.) can add 6.4 billion gallons of new capacity in the next 18 months. Over time, it is believed that a material portion of the ~150 billion gallon per year market for gasoline will begin to be replaced with fuel ethanol.
The Energy Policy Act of 2005 requires that 4 billion gallons of "renewable fuel" be used in 2006 and this requirement will grow to a yearly production of 7.5 billion gallons by 2012.
In the United States, ethanol is most commonly blended with gasoline as a 10% ethanol blend nicknamed "gasohol". This blend is widely sold throughout the U.S. Midwest, and in cities required by the 1990 Clean Air Act to oxygenate their gasoline during the winter.


further Food vs fuel It is disputed whether ethanol as an automotive fuel results in a net energy gain or loss. As reported in "The Energy Balance of Corn Ethanol: an Update," the energy returned on energy invested (EROEI) for ethanol made from corn in the U.S. is 1.34 (it yields 34% more energy than it takes to produce it). Input energy includes natural gas based fertilizers, farm equipment, transformation from corn or other materials, and transportation. However, other researchers report that the production of ethanol consumes more energy than it yields. In comparison, sugar cane ethanol EROEI is at around 8 (it yields 8 joules for each joule used to produce it). Recent research suggests that cellulosic crops such as switchgrass provide a much better net energy production than corn, producing over five times as much energy as the total used to produce the crop and convert it to fuel. If this research is confirmed, cellulosic crops will most likely displace corn as the main fuel crop for producing bioethanol.
Michael Grunwald reports that one person could be fed 365 days "on the corn needed to fill an ethanol-fueled SUV". He further reports that though "hyped as an eco-friendly fuel, ethanol increases global warming, destroys forests and inflates food prices." Environmentalists, livestock farmers, and opponents of subsidies say that increased ethanol production won't meet energy goals and may damage the environment, while at the same time causing worldwide food prices to soar. Some of the controversial subsidies in the past have included more than $10 billion to Archer-Daniels-Midland since 1980. Critics also speculate that as ethanol is more widely used, changing irrigation practices could greatly increase pressure on water resources. In October 2007, 28 environmental groups decried the Renewable Fuels Standard (RFS), a legislative effort intended to increase ethanol production, and said that the measure will "lead to substantial environmental damage and a system of biofuels production that will not benefit family farmers...will not promote sustainable agriculture and will not mitigate global climate change."
Recent articles have also blamed subsidized ethanol production for the nearly 200% increase in milk prices since 2004, although that is disputed by some. Ethanol production uses the starch portion of corn, but the leftover protein can be used to create a high-nutrient, low-cost animal feed.
In 2007 the United Nations' independent expert on the right to food, called for a five-year moratorium on biofuel production from food crops, to allow time for development of non-food sources. He called recent increases in food costs because of fuel production, such as the quadrupling of world corn price in one year, a growing "catastrophe" for the poor. In February 2007, riots occurred in Mexico because of the skyrocketing price of tortillas. Ethanol has been credited as the reason for this increase in food prices The demand for corn has had a rippling effect on many corn-based products, like tortillas. The effects of ethanol and the increasing cost of food have also been felt in Pakistan, Indonesia, and Egypt
Oil has historically had a much higher EROEI than corn produced ethanol, according to some. However, oil must be refined into gasoline before it can be used for automobile fuel. Refining, as well as exploration and drilling, consumes energy. The difference between the energy in the fuel (output energy) and the energy needed to produce it (input energy) is often expressed as a percent of the input energy and called net energy gain (or loss). Several studies released in 2002 estimated that the net energy gain for corn ethanol is between 21 and 34 percent. The net energy loss for MTBE is about 33 percent. When added to gasoline, ethanol can replace MTBE as an anti-knock agent without poisoning drinking water as MTBE does. In Brazil, where the broadest and longest ethanol producing experiment took place, improvements in agricultural practices and ethanol production improvements led to an increase in ethanol net energy gain from 300% to over 800% in recent years. Consuming known oil reserves is increasing oil exploration and drilling energy consumption which is reducing oil EROEI (and energy balance) further.
Opponents claim that corn ethanol production does not result in a net energy gain or that the consequences of large scale ethanol production to the food industry and environment offset any potential gains from ethanol. It has been estimated that "if every bushel of U.S. corn, wheat, rice and soybean were used to produce ethanol, it would only cover about 4% of U.S. energy needs on a net basis." Many of the issues raised could likely be fixed by techniques now in development that produce ethanol from agricultural waste, such as paper waste, switchgrass, and other materials, but EIA Forecasts Significant Shortfall in Cellulosic Biofuel Production Compared to Target Set by Renewable Fuel Standard.
Proponents cite the potential gains to the U.S. economy both from domestic fuel production and increased demand for corn. Optimistic calculations project that the United States is capable of producing enough ethanol to completely replace gasoline consumption. In comparison, Brazil's ethanol consumption today covers more than 50% of all energy used by vehicles in that country.
In the United States, preferential regulatory and tax treatment of ethanol automotive fuels introduces complexities beyond its energy economics alone. North American automakers have in 2006 and 2007 promoted a blend of 85% ethanol and 15% gasoline, marketed as E85, and their flex-fuel vehicles, e.g. GM's "Live Green, Go Yellow" campaign. The apparent motivation is the nature of U.S. Corporate Average Fuel Economy (CAFE) standards, which give an effective 54% fuel efficiency bonus to vehicles capable of running on 85% alcohol blends over vehicles not adapted to run on 85% alcohol blends. In addition to this auto manufacturer-driven impetus for 85% alcohol blends, the United States Environmental Protection Agency had authority to mandate that minimum proportions of oxygenates be added to automotive gasoline on regional and seasonal bases from 1992 until 2006 in an attempt to reduce air pollution, in particular ground-level ozone and smog. In the United States, incidents of methyl tert(iary)-butyl ether (MTBE) groundwater contamination have been recorded in the majority of the 50 states, and the State of California's ban on the use of MTBE as a gasoline additive has further driven the more widespread use of ethanol as the most common fuel oxygenate.
A February 7, 2008 Associated Press article stated, "The widespread use of ethanol from corn could result in nearly twice the greenhouse gas emissions as the gasoline it would replace because of expected land-use changes, researchers concluded Thursday. The study challenges the rush to biofuels as a response to global warming."
One acre of land can yield about 7,110 pounds (3,225 kg) of corn, which can be processed into 328 gallons (1240.61 liters) of ethanol. That is about 26.1 pounds (11.84 kg) of corn per gallon.

Ethanol Fuel Cells

Ethanol may be used as a fuel to power Direct-ethanol fuel cells (DEFC) in order to produce electricity and the by-products of water (H20) and carbon dioxide (CO2). Platinum is commonly used as an anode in such fuel cells in order to achieve a power density that is comparable to competing technologies. Until recently the high price of platinum has been cost prohibitive. A company called [| Acta Nanotech] has created platinum free nanostructured anodes using more common and therefore less expensive metals. A vehicle using a DEFC and non-platinum nanostructured anodes was used in the Shell Eco-Marathon 2007 by a team from Offenburg Germany which achieved an efficiency of 2716 kilometers per liter (6388 miles per gallon).

Rocket fuel

Ethanol was commonly used as fuel in early bipropellant rocket vehicles, in conjunction with an oxidizer such as liquid oxygen. The German V-2 rocket of World War II, credited with beginning the space age, used ethanol, mixed with water to reduce the combustion chamber temperature. The V-2's design team helped develop U.S. rockets following World War II, including the ethanol-fueled Redstone rocket, which launched the first U.S. satellite. Alcohols fell into general disuse as more efficient rocket fuels were developed. Similar psychoactives include those which also interact with GABA receptors, such as gamma-hydroxybutyric acid.

Antidote use

Ethanol can be used as an antidote for poisoning by other toxic alcohols, in particular methanol and ethylene glycol. Ethanol competes with other alcohols for the alcohol dehydrogenase enzyme, preventing metabolism into toxic aldehyde and carboxylic acid derivatives.

Other uses

Effect on humans

Superficially, ethanol evokes a distinctive heat-like sensation in the mouth and a stinging sensation on the skin. In the body it is metabolized to other substances, affecting the central nervous system in particular. The effect varies between individuals, and can be worse when applied in addition to certain drugs, such as opioids or benzodiazepines.


Pure ethanol evokes no taste sensation, but a strong and distinctive smell sensation. On the other hand, it produces a characteristic heat-like sensation when brought into contact with the tongue or mucous membranes, which explains its effect in alcoholic beverages. When applied to open wounds (as for disinfection) it produces a strong stinging sensation. Pure or highly concentrated ethanol may damage living tissue on contact. Ethanol applied to unbroken skin cools the skin rapidly through evaporation.


Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver, multiple forms of cancer, and alcoholism.

Cognitive effects

Ethanol is a central nervous system depressant and has significant psychoactive effects in sublethal doses; for specifics, see effects of alcohol on the body by dose. Based on its abilities to change the human consciousness, ethanol is considered a drug. Death from ethyl alcohol consumption is possible when blood alcohol level reaches 0.4%. A blood level of 0.5% or more is commonly fatal. Levels of even less than 0.1% can cause intoxication, with unconsciousness often occurring at 0.3–0.4%. There is no completely safe level of alcohol for driving; the risk of a fatal car accident rises with the level of alcohol in the driver's blood. However, most drunk driving laws governing the acceptable levels in the blood while driving or operating heavy machinery set typical upper limits of blood alcohol content (BAC) between 0.05% to 0.08%.

Drug interaction

Ethanol can interact in harmful ways with a number of other drugs, including barbiturates, benzodiazepines, narcotics, and phenothiazines

Magnitude of effect

Some individuals have less effective forms of one or both of the metabolizing enzymes, and can experience more severe symptoms from ethanol consumption than others. Conversely, those who have acquired ethanol tolerance have a greater quantity of these enzymes, and metabolize ethanol more rapidly.

Other effects

Frequent use of alcoholic beverages has also been shown to be a major contributing factor in cases of elevated blood levels of triglycerides.
Ethanol itself is not a carcinogen, but effects on the liver when ingested can contribute to immune suppression. As such, ethanol consumption can be an aggravating factor in cancers resulting from other causes.

See also


Further reading

External links

ethanol in Afrikaans: Etanol
ethanol in Arabic: الإثانول
ethanol in Bengali: ইথানল
ethanol in Bosnian: Etanol
ethanol in Bulgarian: Етанол
ethanol in Catalan: Etanol
ethanol in Czech: Ethanol
ethanol in Danish: Ætanol
ethanol in German: Ethanol
ethanol in Estonian: Etanool
ethanol in Modern Greek (1453-): Αιθανόλη
ethanol in Spanish: Etanol
ethanol in Esperanto: Etanolo
ethanol in Basque: Etanol
ethanol in Persian: اتانول
ethanol in French: Éthanol
ethanol in Galician: Etanol
ethanol in Korean: 에탄올
ethanol in Croatian: Etanol
ethanol in Indonesian: Etanol
ethanol in Icelandic: Etanól
ethanol in Italian: Etanolo
ethanol in Hebrew: אתנול
ethanol in Latin: Ethanol
ethanol in Latvian: Etanols
ethanol in Luxembourgish: Ethanol
ethanol in Lithuanian: Etanolis
ethanol in Hungarian: Etanol
ethanol in Malay (macrolanguage): Etanol
ethanol in Dutch: Ethanol
ethanol in Japanese: エタノール
ethanol in Norwegian: Etanol
ethanol in Norwegian Nynorsk: Etanol
ethanol in Polish: Alkohol etylowy
ethanol in Portuguese: Etanol
ethanol in Romanian: Etanol
ethanol in Quechua: Ethanul
ethanol in Russian: Этанол
ethanol in Simple English: Ethanol
ethanol in Slovak: Etanol
ethanol in Slovenian: Etanol
ethanol in Serbo-Croatian: Alkohol
ethanol in Finnish: Etanoli
ethanol in Swedish: Etanol
ethanol in Tamil: எத்தனால்
ethanol in Vietnamese: Êtanol
ethanol in Tajik: Итонул
ethanol in Turkish: Etanol
ethanol in Ukrainian: Етанол
ethanol in Chinese: 乙醇
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1